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The axisymmetric flow of fluid, confined within a rapidly rotating annulus and 
caused by a horizontally applied temperature gradient, is discussed under the 
assumptions of small thermal Rossby number and small Taylor number. It is 
initially assumed that the transfer of heat is purely conductive, and the flow is 
calculated for when the upper fluid surface is either rigid or free. The analysis of 
the problem in which the upper surface is rigid is extended so as to allow con- 
vective as well as conductive transfer of heat. 

1. Introduction 
During recent years there has been considerable experimental and theoretical 

interest in flows driven in a rotating annulus by an applied temperature gradient. 
Phenomena similar to ones observed in the lower atmosphere arise in laboratory 
investigations of these flows, and can be studied under controlled conditions. 
Generally, the annulus has a rectangular cross-section, and is rotated about its 
axis which is vertical. Its two vertical surfaces are held at constant but differing 
temperatures, while the horizontal surfaces are insulating. Under these condi- 
tions, one of four different flow regimes can occur. The flow may consist of a 
steady axisymmetric circulation, there may be a wave system which is steady in 
some rotating frame of reference, the flow may perform a regularly repeating 
fluctuation, or it may be irregular. The present work is concerned with the first 
and simplest of these flow r6gimes. The axisymmetric regime arises for a wide 
range of magnitudes of the relevant physical parameters, but we shall be con- 
cerned with it for the case of rapid rotation and small thermal Rossby number, 
so that the Coriolis term is dominant in the fluid acceleration, and small Taylor 
number, so that viscous effects are confined to narrow boundary layers a t  the 
surface of the annulus. The precise conditions under which the solutions presented 
below are valid become apparent only after detailed investigation, but they all lie 
in the so-called ‘lower symmetrical’ part of the parameter range for which axi- 
symmetric flow occurs. (For an account of recent experimental work in this field, 
see Fowlis & Hide (1965), in which a number of other references are given.) 

In spite of its relative simplicity, comparatively little theoretical work has 
been concerned with the axisymmetric rkgime. There have been more theoretical 
investigations of the steady wave regime in the form of stability analyses of an 
axisymmetric flow, though the basic axisymmetric flow used for these analyses 
has generally been a reasonable one, rather than an exact solution of the flow 
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equations. It is the aim of the present .work to help provide an understanding of 
the axisymmetric flow rdgime a t  least for a certain range of physical parameters, 
and thus to provide a basis for further theoretical work investigating stability. 

An analysis of the axisymmetric flow under the above-mentioned conditions 
of small thermal Rossby number and small Taylor number, together with the 
assumption that the heat transfer is purely conductive, was given by Robinson 
(1959). The flow in the interior of the annulus was found to consist of a vertically 
sheared zonal flow around the annulus. There is also a much weaker meridional 
circulation in a cross-section of the annulus through its axis. This circulation is 
carried through thin boundary layers at the walls of the annulus. On the hori- 
zontal surfaces these are Ekman boundary layers, which, as is typical for rapidly 
rotating flow problems, are crucial for determining the properties of the flow 
throughout the interior of the annulus. The boundary layers on the vertical side 
walls on the other hand are of only local importance and adjust the remainder of 
the flow to the side-wall boundary conditions. The analysis of these side boundary 
layers is more complicated than that of the Ekman layers. Though Robinson 
derived a solution for the side layers, he cast some doubt on the validity of his 
solution in a footnote added in proof (p. 611). This footnote suggested that, in the 
light of an analysis of a related problem by Stewartson (1957), the boundary 
layers on the side walls are of a more complicated character than that deduced 
for them in the paper itself, and have a double structure with one boundary layer 
inside another. 

The problem described above is re-examined in the present paper, the flow in 
the side-wall boundary layers is calculated, and the uncertainty raised by the 
footnote resolved. It is found that the side boundary layers do not have the 
double structure suggested by the footnote, but are of the form Robinson origin- 
ally supposed. This does not vindicate Robinson’s original determination of them 
however, which is in error as no account is taken of the problem of matching the 
side layers onto Ekman layers at the top and bottom of the annulus. Only when 
this matching is done can the solution be fully determined. 

The same problem, apart from the single change of supposing the top surface 
of the fluid in the annulus to be free rather than a rigid boundary, is discussed 
next. This change introduces several interesting modifications, and is of relevance 
as the upper fluid surface is free in much of the experimental work. Again the 
flow in the interior of the annulus is a vertically sheared zonal flow, and there is 
again a weak meridional circulation around the circumscribing boundary layers, 
though this is weaker by an order of magnitude from what it is when the upper 
surface is rigid. This is due to the weak character of an Ekman layer at a free 
surface (Hide 1964). There are larger meridional circulations in each side layer 
though these never penetrate into the interior. Actually, these also occur in the 
problem with rigid upper surface, though the disparity in strength is not then so 
marked. Another feature of the flow when the upper surface is free is that the side 
boundary layers do have a double structure. 

In  all the work that has been described so far, the transfer of heat has been 
supposed purely conductive. The final section is concerned with extensions of the 
preceding analysis to discuss the modifications introduced when some account 
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is taken of heat convection. The natural way to do this is to calculate by an 
iterative process the corrections to the solutions derived earlier that are produced 
when convective effects are small but not entirely negligible. Without calculating 
these successive corrections in detail, it is possible by a careful analysis, in the 
case when all the boundaries are rigid, to discover the structure of the expansions 
generated. The expansions turn out to be simple power series in the critical pars- 
meter h = CT/~C-$, where CT is the Prandtl number, p the thermal Rossby number 
and E is the Taylor number. In  view of the complicated nature of the flow such a 
simple result could hardly have been foreseen at the start, and indeed an analog- 
ous discussion of the problem in which the upper fluid surface is free soon runs 
into difficulties and is not pursued. The power series in h cannot be expected to 
give useful representations of the various dependent variables when h becomes 
of order unity, that is when conductive and convective effects are of equal 
significance in the transfer of heat. However, they show what the orders of magni- 
tude of the various dependent variables are in the different regions of the flow 
when conduction and convection are of equal significance, and hence how it is 
possible to construct a self-consistent scheme for the description of the flow. In 
fact the determination of the flow field is reduced from a problem of solving a 
system of three equations, two of second order and one of fourth order, to one of 
solving a single equation of second order. One consequence of including the 
convective transfer of heat is that it becomes necessary for the side boundary 
layers to have a double structure even when the upper fluid surface is rigid, which 
is not necessary when there is no convection. 

The single second-order equation referred to above is of course non-linear, and 
no full solution is found. Expansion in powers of h linearizes this equation and 
allows the evaluation of approximate expressions for the various flow properties. 
Some results of this expansion are given, the most extensive being an expression 
for the Nusselt number which is evaluated through to the h4 term. 

2. The governing equations 
This analysis is performed under a number of simplifying assumptions, one of 

the most important being the Boussinesq approximation. It is supposed that the 
fluid is incompressible, that density variations are small, that they are linearly 
dependent only on temperature variations and that they are dynamically signifi- 
cant only in the buoyancy force they produce. Then the equation of steady motion 
referred to axes rotating with the steady angular velocity 8 of the annulus is 

Here u’ is fluid velocity measured relative to the rotating frame, XI is a Cartesian 
position vector, the 03 axis is vertically upwards, g is the acceleration due to 
gravity and v is the kinematic viscosity which will be supposed constant. Also a is 
the coefficient of thermal expansion, po is the fluid density corresponding to tem- 
perature To, T’is the local temperature andp’measures the departure of the pres- 
sure from the hydrostatic pressure that prevails when the fluidis a t  rest a t  auniform 
temperature To. The assumption that centrifugal forces are negligible is also made. 
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756 C. Hunter 

We next introduce non-dimensional variables. These can be defined in terms 
of quantities already introduced, the distance t between the outer and inner 
radii of the annulus and the difference A T  between the temperatures applied at 
the two vertical walls. For definiteness, we shall suppose the inner wall to be held 
at constant temperature To and the outer wall a t  To + AT. The following un- 
primed non-dimensional variables can then be defined 

This scaling is suited to a flow in which the primary balance outside the boundary 
layers is that between the Coriolis force, the buoyancy force and the pressure 
gradient. In terms of these dimensionless variables, the equation of motion is 

p(u.grad)u+(kxu)  = Tk-gradp+eV2u, (3) 

where k is a unit vector in the upward vertical direction, and we have introduced 
the dimensionless parameters 

p, the thermal Rossby number = agAT/(4tQ2), 

E ,  the Taylor number = v/(2Rt2). 

In  addition to the equation of motion we need the continuity and heat-transfer 
equations which, in terms of our dimensionless variables, are 

divu = 0, (4) 

( 5 )  upu . grad T = sV2T 

Here cr is the dimensionless Prandtl number V / K ,  where K is the thermometric 
conductivity. 

We shall be concerned with solving the equations under the assumptions that 
both /? and E are small. We therefore neglect the convective acceleration term in 
the equation of motion which is multiplied by p, but not of course the viscous 
term with factor E which we can expect to be significant in the boundary layers. 
We shall also at fist neglect the convective term in our heat-transfer equation. 
For this to be justified it is clear that the sizes of the small quantities and E 

must be suitably related. It turns out that the approximation is justified provided 
o-pe-4 is small. That this is the relevant condition rather than the apparent one 
that crpe-l be small is due to the anistropy of the induced velocity field, and is 
just one illustration of the fact that the structure of an enclosed flow such as 
we are studying is not readily deducible ab initio, but becomes apparent only after 
the solution has been obtained. 

Following Robinson, we make the further simplifying assumption that the 
radius of the annulus is much greater than its width or depth. This allows us to 
neglect curvature effects and work with Cartesian axes in a cross-section of the 
annulus. (Though convenient, this simplification is not essential and the problem 
could be worked without it. The methods remain the same but various expressions 
become more complicated.) We take the origin in the centre of the inner cooler 
side, the x-axis radially outwards, the y-axis along the length of the annulus and 
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the x-axis vertically upwards. The flow, which is independent of y through the 
assumption of axial symmetry, takes place in the region bounded by the planes 

= 0, x = 1, x = &ape  = fy, 

where d is the depth of the fluid, and y is the geometrical parameter defined by 
the ratio d/2 t .  (Robinson considered the case of an annulus of square cross- 
section only for which y = 4.) 

The temperature T satisfies the boundary conditions 

T = O  at x = O ,  T = l  at x = l ,  aTlax=O at z = f y ,  

since the side walls are held at fixed temperature, while the upper and lower sur- 
faces are insulating. The solution of the heat conduction equation V2T = 0 
subject to these conditions is 

so that temperature varies linearly with distance across the annulus. 
Because of the axisymmetry and the corresponding lack of y-dependence, the 

continuity equation can be satisfied identically by means of the stream function 
$ where 

Using this stream function, the second component of the equation of motion (3) 
becomes 

The pressurep can be eliminated between the first and third components of (3) to 

T = X, ( 6) 

u = akpz, = -a$lax. (7) 

a$laz = Ev2v. (8) 

- - 

give, using our solution for T, 
sv4$ + avlaz = 1. (9) 

We therefore have a pair of coupled equations for v and @ as functions of x and z,  
and the next two sections will be concerned with their solution. Here and subse- 
quently V2 is simply the two dimensional Laplacian a2/ax2 + a2/az2. 

3. The flow in an annulus with four rigid walls 

and we have the boundary conditions 
If all the boundaries are supposed rigid, the fluid velocity must vanish at each 

for (8) and (9). Since we are interested only in the case of E small, it is natural 
to tackle these equations by boundary-layer methods. The introduction of these 
can be delayed a little, as it is apparent that the governing equations (8) and (9) 
and the boundary conditions on the horizontal surfaces z = y can be satisfied 
by a solution of the restricted form 

v = V(z), $ = S W ( Z ) .  (11) 

The functions V and P are found as the solutions of a coupled pair of ordinary 
differential equations and, neglecting terms which are small and of order 
exp (d), they are 

F ( z )  = y2-6{1- ( ~ o s ~ ~ - s i n [ ~ ) e ~ i -  ( ~ o s ~ ~ + + i n ~ ~ ) e - ~ 2 } ,  (12) 

V ( z )  = ~-ye~~cosy l+ye -~~cos [2 ,  (13) 
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where 

These expressions describe a flow which is a simple vertically sheared zonal flow 
away from the top and bottom, and has Ekman layers near these boundaries to 
adjust it to the required boundary conditions. In  the Ekman layers, but not in 
the interior, there is motion in a cross-section of the annulus, consisting of a net 
horizontal flux of magnitude y(*s)* in the positive x-direction in the bottom 
layer, and an equal and opposite flow in the top layer. When boundary-layer 
methods are used, the flows in the interior and Ekman layers are determined 
fully only after they are all matched. 

We now introduce auxiliary functions $* and v* by setting 

$ = € + P ( Z )  + $*, v = V(2) + v*. 
These functions satisfy the homogeneous equations 

a p p z  = EvzV*, 

sv4$* + av*laz = 0, 
and the boundary conditions 

$* = a$*laz = V* = o on x = k y ,  
a$*lax = 0, V* = - v(z), $* = - S @ ( Z )  on x = 0,  x = 1. 

The auxiliary functions have non-zero boundary conditions at the side walls 
only, and can differ significantly from zero near these walls only. 

There are two methods for solving the equations for v* and $*. One is to find 
separable solutions of the equations, and then take a suitable combination of 
these separable solutions. This is the method used by Stewartson in his analysis 
of the present equations in a different context. One gets a complicated trans- 
cendental equation for the separation parameter, which can be solved approxi- 
mately to the lowest order when E is small, but the working becomes very messy 
when higher degrees of approximation, which Stewartson did not investigate, 
are required. The analysis of separable solutions satisfying the requisite zero 
boundary conditions on the top and bottom surfaces show that all the solutions 
decay exponentially to zero away from the walls in distances O(d) ,  apart from 
a single exceptional solution which decays instead in a distance O(&. The 
exceptional solution arises in what Stewartson terms the ‘symmetric case’ but 
not in the ‘antisymmetric case’. The symmetric and antisymmetric cases are 
respectively those in which the solution for v* is a symmetric and antisymmetric 
function of z when the top and bottom boundaries are taken, as in the present 
work, at  equal and opposite values of z. Stewartson’s terminology was suited to 
his problem where he was principally concerned with the function v*. However, 
the terminology is not generally appropriate as it is easily seen from the governing 
equations that if v* is a symmetric function of z, $* is antisymmetric in z, and 
vice versa. The solution we require to satisfy the boundary conditions (16) needs 
to have v* antisymmetric and $* symmetric in z, so that the exceptional separ- 
able solution which gives a side boundary layer of width O ( d )  does not arise. 
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We shall proceed to solve (14) and (15) by boundary-layer methods following 
Greenspan & Howard (1963). The form of the solutions for $* and v* near 
x = 0 only will be given, as that near the other wall x = 1 has a precisely similar 
structure, and can be obtained from that near x = 0 via the substitution 
of (1 - x )  for x throughout. For the side boundary-layer analysis, we need to 
introduce a scaled co-ordinate 6 = xed.  (14) and (15) then have the approximate 
form 

with terms O(&) compared with those retained being neglected. These approxi- 
mate equations cease to be valid within distances O ( d )  from the top and bottom 
surfaces. Equations (17) must be solved subject to the boundary conditions (16) 
which, away from the top and bottom, become 

a$*/ac = 0, W* = -2, $* = -y(&)s on 6 = 0. (18) 

A separate analysis is needed for the parts of the side layers within O ( d )  of the 
top and bottom. For these regions, we use the scaled x-co-ordinates cl and c2 
defined above. The flow equations have the approximate form 

(19) 1 a$*/ag = (+s)+ azv*/ap+ o(&, 
a4$*/ag4+ 2(2+ av*/ag+ o(&) = 0, 

with 6 either of cl or Q. Throughout the side layer, v* and $* must tend to zero 
as [-+a to match onto the interior. Also, the solutions in the different sections 
of the side layer must match across their common boundaries, and this matching 
must be carried out in order to determine fully the solution for the side layer. It 
should be noted that the flow in the Ekman extensions a t  the top and bottom of 
the side layer does not satisfy the side-wall boundary conditions. The reason for 
this is that its range of validity does not extend to the side wall. There are two 
square corner regions of linear dimension O(e3) in which yet another scaling of 
the equations is relevant. This scaling is one which does not allow any terms to 
be neglected but, as Greenspan & Howard found, the remainder of the flow can 
be solved without investigating these regions. 

The analysis of the Ekman extensions of the side boundary layers is straight- 
forward, as the differential equations (19) which govern it are essentially ordinary 
differential equations. Near z = y, we have the solution 

w* = A(c)( l -  ec1 cos Cl}, $* = A(6) (ie)3(1- (cosCl -sin<l)ecl}, (20) 

and near x = - y ,  

w* = B@{- 1+e-c8~os<~}, $* = B(~)(~s)t{l-(cos62+sin62)e-ca}. (21) 

HereA(5)andB(c)areasyetunknown.TheymustbesuchthatA(a) = B ( a )  = 0,  
and must also match onto the main part of the side boundary layer. Since the 
solution in this region is symmetric in v* and antisymmetric in $* as functions 
of z, it  is necessary that 4 6 )  = W).  
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It is convenient to expand 

I $ * ( t , z )  = s-+$o+E*$l+O(€%), 

v*(t;, z )  = vo + d v ,  + O(&, 

for the investigation of the main side boundary layer. To match the side layer 
onto its extensions (20) and ( 2 1 ) ,  we require v*++A(t) ,  $*+A(<)(&)B as 
z+ 2 y ,  so we also expand 

A ( t )  = A,(t)+€"4,( t )+O(Eg),  

kO+O, vo+ + Ao(t)> @l+Ao(t)/2* as z+ y .  

and get the conditions 

The function $o is next expanded in terms of the complete set of functions 
sinmn(z+ y) /2y,  where m is any integer. Because of the symmetry of $o as a 
function of z ,  odd values of m only are required, so that 

This sine series can be differentiated term by term since $o vanishes at z = y ,  
and the resulting cosine series can also be differentiated term by term (Jeffreys 
& Jeffreys, 1956).  It follows from ( 1 7 )  by eliminating v* that 

a6$*/ap + aZ$*pzz = 0, (24) 

and so the functions fo, n(t;) must satisfy 

dGf0,,/dt6 = ( 2 n  + 1)2nn"fo,n/4y2. 
It also follows that 

Integrating with respect to z ,  and using the fact that v* is antisymmetric in 2, 
we get 

The boundary conditions ( 1 8 )  at the wall t; = 0 must now be applied, and they 

The relevant solution of ( 2 5 )  that satisfies these boundary conditions and tends 
to zero as ~ + C E  is 

with the abbreviation w, = [(Zn + l )n/2y]f .  It follows that 
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The matching onto the Ekman extensions is accomplished if we take 

for the expressions for v then match, and the determination of the leading terms 
in the expressions for the flow variables in all the regions is now complete. 

Since $o vanishes both a t  the wall 5 = 0 and at the outer edge 6 = co of the 
side layer, it represents a closed cell circulation in the (2, 2)-plane with flux O(d).  
A net downward flux of magnitude O(&) only is needed to link up the fluxes in 
the Ekman layers determined earlier, and this is given by the next terms in the 
expansion. 

The determination of the next terms is very similar to our previous working. 
Although $l does not vanish at z = k y ,  $1 - A,(<)/ J2 does and so we expand 
it in a sine series 

and this too can be differentiated twice term by term with respect to z. Equation 
(24) for +* requires that the functions fl,n(c) satisfy the equations 

d6f1,n/dC6-wEfi.n = -Ab"')(C) Jz/Ywi*  (33) 

An expression for v1 is found as before by integrating the second of equations 
(17) and using the antisymmetry condition and is 

The boundary conditions at < = 0 are v1 = a$,/aC = 0, $1 = - yf J2, and so 

2 2=-Y '  
8Y require m 

ti,,(()) = 0, since Ao(0) = - x 
n = ~  (2n+ 1) 7~ 

The solution of (33) that satisfies these boundary conditions and tends to zero 
as (-to3 is 

For the last term in this expression, we have introduced the notationL?(w,f) for 
the solution of the sixth-order inhomogeneous equation 

d6Yldt6 - w6Y = f (8 
which -+ 0 as c-+ co, it  being supposed that f -+ 0 exponentially as t-+ CQ, and 
which satisfies the boundary conditions 

y = dy/dC = d4y/dC4 = 0 a t  6 = 0. 
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It can be shown that 

The value of A,([)  is the limiting value of v, as z-+ y and so 

and the second terms in our expansions are fully determined. Terms in higher 
powers of e can clearly be determined iteratively in an obvious way, but we shall 
not continue the expansion. Since the function $, vanishes at the outer edge of 
the side layer, but equals - y/,/2 a t  the side wall, we have the net downward 
flux of y 4(&) in the side layer required to complete the meridional circulation 
through the Ekman layers. This current is turned round from flowing horizontally 
to flowing vertically and vice versa in the Ekman extensions of the side layer. 

The boundary-layer analysis just given differs from Robinson's in certain 
significant respects. Robinson omits consideration of the top and bottom 
extensions of the side boundary layer and determines the flow in the side layer 
simply by solving (17) subject to the boundary conditions (18). In  terms of the 
present notation, which is generally the same as Robinson's though the boun- 
daries are placed differently, Robinson's method is to look for a series solution 
$* = x,fn([)sinwi(z+ y) ,  since $* = 0 on z = & y. The fn are determined by 

choosing suitable solutions of the homogeneous equation d6f,/dE6 = w: f, which 
+ 0  as [+m and allow the right boundary conditions to be satisfied on < = 0. 
As the above discussion has shown, this treatment is inadequate. One can not 
apply the boundary conditions at  z = y directly onto the side boundary layer. 
This layer must be matched onto the boundaries z = 2 y through Ekman type 
boundary layers at its top and bottom. Robinson is fortunate in that, as we have 
seen, this matching requires the leading term $o of $*, though not $,, to vanish 
as x+  k y in the side boundary layers, so that his treatment should give $o and 
v,, correctly. His quoted results for these leading terms are in error, however. 
Though his expressions for them both satisfy the sixth-order equation (24 )  and 
the correct boundary conditions, they do not satisfy the correct inter-relations 

n 

(17). 
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4. The flow when the upper surface is free 
Since much of the experimental work on annular flows is done with the upper 

surface of the fluid free, we shall now rework the previous problem for this case. 
The new boundary conditions on the upper surface are 

@ = aqaz = aulaz = a2@r/az2 = o on z = 7. (37) 

(We have supposed that the free upper surface remains plane. The magnitude of 
vertical surface displacements relative to the width of the annulus is of the order 
of /3 times the ratio of centrifugal force to gravity, and we neglect this in line with 
our previous approximations.) 

The method of dealing with the present problem follows closely that of the 
previous section though there are some new features. Once again the equations 
and boundary conditions on top and bottom can be satisfied by functions of z 
only. After solving for these we write as before 

} (38) 
v = ( z+  y ) -  ( 2 - ~ ) * - ( & ) ~ ( ~ 0 s [ ~ + s i n [ ~ ) e ~ ~ +  (2s)*e-cecos&+v*, 

$ = ~ ( 1 -  ec1 cos gl - (cos c2 + sin b) e-cz} + $*, 

and then go on to solve for the functions v* and I+?* which differ significantly from 
zero near the side walls only. The interior flow again consists of a vertically 
sheared zonal flow, though this is given by a different expression. A more signi- 
ficant difference is that the meridional flux through the Ekman layers, of magni- 
tude E in the negative x-direction in the top layer and in the positive x-direction 
in the bottom layer, is weaker by O(&) from what it was previously. This result 
is in line with that of Hide (1964) who found that the Ekman boundary layer 
associated with a free surface is weaker than that associated with a rigid surface. 

The functions @* and v* satisfy the same homogeneous equations (14) and 
(15) as before, and the boundary conditions are now 

on z =  y ,  (39) i 
@* = a@*laz = U* = 0 on z = - y ,  @* = a2@*/w = av*laz = o 

a$*pX = 0, v* = -2-  y+(2s)B, $* = --E on x = 0, x = 1, 

except within distances O(e9) of z = 5 y. 
The analysis of the side boundary layers is now more complicated. The func- 

tions @* and u* are no longer simply symmetric and antisymmetric functions of 
z respectively, and so, as Stewartson’s separation of variables analysis shows, we 
must expect side boundary layers of double structure with thicknesses O ( d )  and 
O(-E)). Solutions for the flow must be derived for the inner side boundary layer of 
thickness O(sf), the upper and lower extensions of this layer within distances 
O ( d )  from the top and bottom, the outer side boundary layer of thickness O(ea), 
and its upper and lower extensions. The solutions for the outer side layer must 
be matched onto the interior flow and the boundary conditions on x = 0 must be 
applied to the inner side boundary layer, but not its extensions. Only when we 
have solved for all these regions and matched across all adjacent boundaries can 
the solution be fully determined. This problem is similar to that described in 
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56 of the paper by Greenspan & Howard, though they have the additional 
complication of a time dependence. 

The boundary conditions on the side x = 0 and the form of the inner side 
boundary-layer equations require that v* is O( 1) and @* is O ( d )  in this region as 
before. In  the upper and lower extensions of this layer and throughout the outer 
side boundary layer, v* must be O( 1) for matching, while the governing equations 
require +* to be O ( d )  only. We shall start by solving for the outer layer. Intro- 
ducing the suitably scaled variable 7 = xc), the governing equations are 

while for the upper and lower ends of this layer, they are 

This last pair of equations differs from those for the previous problem (19) which 
are still relevant to the extensions of the inner side layer only in the magnitude of 
the errors. 

The integrals of (40) for the outer side layer are 

v* = U(7)  + O(E+), @* = E q  W(7) + XUN(7)I + O(E), (42) 

while those of (41) for its upper and lower extensions are respectively 

O* = A(7)  + O(d) ,  +* = O +  O(E) ,  (43) 

( 44) 

The four functions A ,  B, U and W are O(1) functions of integration. The 

1 v* = B(q){l-  e-62 coscz} + O ( d ) ,  

+* = - B(7)(&)4{1- (~0~1;~+sin1;~)e-~2)+O(e). 

matching of these solutions requires 

U = A = B, W + y U  = 0,  -B = ~ ~ ( W - Y U ” ) ;  (45) 

relations which can be solved to give 

Here C is a constant, and the condition of matching onto the interior flow with 
v*, +*+O as ~ + C O  has been applied. The constant C can be determined only 
after we have matched onto the inner side boundary layer. 

For the upper and lower extremities of the inner side layer the respective 
integrals are similar to (43) and (44) for the extensions of the outer side layer and 
can be written as 

(47) 

(48) 

v* = D($) + O(& @* = 0 + O(E%), 

v* = E(E){1-e-62cosc2}+O(~~), 

+* = - E ( E )  (&)+(I - ( c o ~ ~ ~ + s i n ~ ~ ) e - C ~ ) + O ( ~ ~ ) ,  
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where D and E are O(1) functions of integration. The inner side layer proper 
requires the solution of equations 

with $* now being O ( 6 ) .  
It is convenient for the solution of the main inner side layer to expand functions 

in powers of E .  The series must now be in ascending powers of &, as this is the 
lowest common multiple of the powers d, E* and d that arise in the problem. 
Thus 

(50) 1 
$* = €hj90+&$l+€&$z+&$3+ ... , 
v* = vo+€*v1+€b2+€~v3+ ... , 
D = D,+&D,+€+Dz+€'hD3+ ... , 
E = E,+&El+B+Ez+€'hE3+ ..., 
c = co+E-ilic,+€~cz+€~c3+ ... . 

The fact that the series solutions (50) of equations (49) must match onto soh- 
tions (47) and (48) requires that both $, and $1-+ 0 as z+ & y ,  so we expand 

= (mn/2y)', 

and can differentiate this series twice term by term with respect to z. The func- 
tionsf,,, and f1,, must therefore both be solutions of the homogeneous equation 

d6y/d<6 = .-&?J. (52) 

It follows then from (49) that 

where a and p are constants of integration. The side boundary conditions must 
next be applied a t  ( = 0. They givef,,,(O) = f1,,(0) =fi,,(O) = f;,,(O) = 0, and, 
expanding - ( z+  y )  in terms of the functions C O S U ~ ( Z +  y) ,  m = 0 to 00, which 
are complete in - y < z < y ,  

It follows that f1,,(E) = 0, and that $, is identical to what it is in the problem of 
$3. Note that although $* and v* do not necessarily -+ 0 in the inner layer as 
[-+a, the requirement of matching onto the outer layer solution precludes 
exponential growth. Finally, the matching of the zonal velocity (53 )  as (+m 
with the solution for the outer layer gives 

co = - Y ,  cl = 0, p = y"i+/2%. (55)  
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The first two significant terms in the expansion of the solution in powers of & 
are now determined in all regions. For the inner side layer 

z= :  

I 
I 

f - I  +- 

No flow 

I I 
I 

FIGURE 1. The meridional flow in the (x, 2)-plane when the upper surface is free. The dashed 
lines separate the various boundary-layer regions, and the arrows indicate fluxes of differ- 
ent strengths. The triple-headed arrows are for O(& fluxes, the double-headed arrows for 
O(s4) fluxes and the single-headed arrows for O(s) fluxes. 

and the requirement of matching v* onto the Ekman extensions as z+& y 
determines 

= - 2Y - ~ o ( 0 ,  Dl(8 = El(6) = Y % W .  
The matching of the extensions of the inner and outer side layers onto each other 
is a by-product of the matching of the layers themselves. 

In  the present problem, just as in the previous one, the largest component of 
the meridional flow is a closed circulation of magnitude O ( d )  in the inner side 
layer. Though we have not yet discussed the flow to O(E*) for the inner side layer, 
we can deduce that it must consist of a net downflow of magnitude y(&)*, aince 
the solutions we have already determined show that there is a downflow of this 
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magnitude from the inner side layer into its lower extension, across the common 
boundary of this extension and the lower extension of the outer layer, up into the 
main outer layer and then back into the inner side layer (see figure 1). Thus to 
O ( d )  we again have a closed circulation that is confined to the side. We shall not 
get anything other than this until we get to the O(E)  through-flow needed to link 
up the flows through the main Ekman layers. 

The zonal velocity v around the annulus grows from its boundary value of zero 
at x = 0 to its value for the interior flow in two stages. It is clear from the series 
(53) we derived for v and the subsequent analysis that the outer side layer is 
needed to bring v up to its interior value v(x = 0, z )  if this interior value is such 
that 

v(x = 0)dz * 0. Sr, 
This is now the case. As far as the O( 1) terms are concerned, v grows to the value 
z across the inner side layer but the outer side layer is needed to bring v up to its 
interior value of ( x  + y) .  

The terms with subscripts 2 and 3 give a detailed description of the O(&) 
meridional flow in the inner side layer. Since it is necessary that (IjT2 + & l/f3) -+ 0 
as z - ty  and -t-(Eo(6)+&EI(g))/,/2 as z+-y, it is convenient to expand 

The expression on the left vanishes at both z = k y ,  so that the series on the right 
may be differentiated twice term by term with respect to x .  Equations (49) for 
$* and v* require 

(59) 
Eb'n( 6 )  

($-gk) ~ 2 , r n ~  +eilp;f3,m(<)1= m 2 ,  

with a and b constants as yet undetermined. The boundary conditions at the 
side g = 0 require 

a = f i , m ( O )  =f3,m(O) =fpk(O) = 0, 

The integrals of (59) which satisfy these boundary conditions and which tend to 
zero as 6 -+ 00 are 
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Matching the inner and outer side layers determines the constants C,, C3 and b 

This second stage of the approximation is completed by the evaluation of D2([),  
D3([), E2( [ )  and E3([) from the limits of v, and w, as x-+ + y, and further stages 
can clearly be obtained by repeating the methods used above. 

5.  An analysis of convective effects 
So far, the transfer of heat has been supposed to be purely conductive. The 

neglect of convection simplifies the analysis, as the temperature field is found 
first before the dynamics are discussed. 

In  this section, we shall study the modifications introduced when some account 
is taken of the convective transfer of heat. As a first step, we consider the effect 
of convection as a small perturbation on the previous solutions. To do this, we 
expand in powers of the small parameters (up) 

and similarly for $ and v. We enclose the subscripts denoting the various terms 
of the (up)-expansion in brackets to avoid confusion with previous subscripts. 
The subscript zero terms here represent the solutions of either of the last two 
sections. In  this expansion we shall continue to neglect terms in ,!3 alone, so that 
the convective acceleration terms are ignored. The conditions under which this 
neglect is valid can be established once the analysis of the (up)-expansion has 
been carried out. 

T = !&) + upT,fi + (up)'!& + . . . , (62) 

The term T(, in expansion (62) is found by solving the Poisson equation 

As Robinson realized, a particular integral of this equation is flL) = q0), as is seen 
by comparing (8) and (63). This particular integral is not the full solution for 
T(l) as it does not satisfy the boundary conditions on the T,, which are 

aT7d 
ax 

T,= 0 on z =  0 , l ;  = O  on z =  + y  for n 2 1. (64) 

For ql), we must add to q,) a harmonic function that vanishes on the sides but 
whose x derivatives equal - aw,,)/az on the top and bottom. 

For definiteness, we now restrict our attention to the problem in which all the 
boundaries are rigid. Then - av(,)/ax = y(2s)--* - 1 on the top and bottom away 
from the sides, while inside the side layers i t  is some more complicated expression 
also O(s-4). The most significant contribution to ql) is therefore a harmonic 
function O(E-4) vanishing on the sides and with x derivatives of y(2.5)-9 on top 
and bottom, and has the representation 

a sin(2n+ 1)msinh(2n+ 1)m 
(O - n 2 ( 2 . ~ ) 4 ~ = ~  (2n+ 1),cosh(2n+ 1)ny ' 
T -- 4y z 
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A different but equivalent expression is quoted by Robinson who also plots iso- 
therms incorporating this small correction term. These are tilted from thevertical, 
being nearer the cold side a t  the top and the hot side at the bottom. 

It is important for the subsequent developments to consider the way in which 
the solution for qo arises from the right-hand side source term of the Poisson 
equation (63), and to discuss the structure of q,, in more detail. The source term 
vanishes in the interior, is 0(r1) in the Ekman layers and the Ekman extensions 
of the side layer, and is O(E-3) in the side layer itself, these non-vanishing terms 
being of the characteristic boundary-layer type. It follows that q, has compon- 
ents of boundary-layer type, together with an overall component whose scale of 
variation is that of the whole annulus. The magnitudes of the various boundary- 
layer components are calculated readily from (63) by requiring a balance of 
the two sides, and it follows that they are all O( l), just as the particular integral 
q,,) is in the various regions. The magnitude of the overall component of T,, is 
evaluated by calculating the source strengths of each region. To do this for any 
region, we multiply the magnitude of the right-hand side of (63) by the area of 
the region. In  addition, it must be noted that the effects of sources near the 
sides are weakened because of the nature of the side boundary condition T(, = 0. 
Any source within a small distance 6 of the side induces an equal and opposite 
image source at its reflection in the side, and the net effect of this is to reduce the 
magnitude of the source by a factor 6. The insulating boundary conditions on 
the top and bottom have the opposite effect of inducing equal image sources, 
and so there is no corresponding reduction in strength for sources near these 
boundaries. The source strengths of the regions can therefore be calculated as 
0(c1 x eg) = O(e-4) for the Ekman layers, O(B-3 x €4 x €3) = O(1) for the side 
layers and 0(c1 x €8 x €3) = O(e$ for the Ekman extensions of the side layer. 
The first of these is predominant and produces the component (65) of T(l). 

There is one further addition to be made to the above scheme which we have 
deduced for the structure of the T,, field, and this concerns the field due to the 
sources in the Ekman extensions of the side layers. The overall component of 
T,, due to these is O ( d )  as calculated above, but is of a larger order of magnitude 
than this in square corner regions of the side layers within distances O ( d )  of the 
top and bottom. These regions are intermediate between the source region and 
its far field. In  the interior proper, the source region is point-like, but within the 
O ( d )  square corner, it  appears as a long line source of strength O(e-l) times the 
Ekman layer thickness O(&), that is O(e-3) per unit length. The effect of this in a 
region that is O(&) square is O(B-4). Although this component of the T,, field is 
larger than all the boundary-layer components, it  is less than the overall q1) 
field and does not turn out to be dynamically significant in the present problem 
to the lowest order. The successive terms qn) of our series all have similar com- 
ponents, though q,) and $(n) do not, showing a basic difference between the 
equations for the T(,)'s and those for the dynamical variables. 

and q, the first of the 
sequence of equations 

The next step in our iterative scheme is to solve for 

49 Fluid Mech. 27 
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subject to the boundary conditions (10). As before, we solve first for the interior 
and Ekman layers, and later add the necessary side layers. Approximate solu- 
tions for general n valid away from the sides are 

and these expressions are known once T(n) is known for the interior. The errors 
here are O ( d )  compared with terms retained, and the solutions (68) reduce to the 
subscript zero solution (12) and (13) when we set T(n) = T(o) = x. 

When we come to consider the solutions for the side boundary layers, one 
significant point of difference between the solutions for $(fl and qfl compared 
with $(o) and q0) for this problem of all rigid boundaries is that the subscript one 
terms must have side boundary layers of double structure. This double structure 
is avoided with the subscript zero terms because the interior solution for $(o) is 
symmetric and q0) antisymmetric in z. Although $(n) in (68) is symmetric in z, 
qn) is not antisymmetric in z unless aT(,,/ax is symmetric in z, and aT,,/ax is not 
symmetric in z as is readily seen from its leading term (65). 

is the O(e-4) overall field and this drives an 
interior flow for which ql) is O(e-4) and $(1) is O(1). It is also necessary that q1) 
and are of the same magnitudes in the outer side layer, its Ekman extensions 
and the extensions of the inner side layer, but hl) is O(e-9) while ql) is still O ( d )  
in the inner side layer. In the side layers proper, the temperature gradient term 
aT(,)/ax arising from the overall field is O(E-4) and is of equal importance with the 
most significant velocity terms, but the temperature gradient arising from the 
term in T,,) of side boundary-layer character is less significant as it is O(6-i). The 
temperature gradient term is not significant in the Ekman extensions, and the 
O ( d )  field in the O(&) square corner region does not induce any dynamical 
motion as far as the largest components are concerned. 

Having laid the groundwork, it is now possible to deduce the forms of the 
general terms T(n), qn) and $(n), and thus the structure of the expansion in powers 
of crb. The general term T(n) satisfies the equation 

The most significant term in 

It can be verified by induction that, for general n, T(n) has a term O(E-4”) with 
overall length scale, contributed to this order by the right-hand side sources in 
the interior and main Ekman layers but not the sides. It has less significant 
boundary-layer terms which are O(e-4”+4) for the inner and outer side layers and 
their Ekman extensions. There are also O(e-Bn+f) terms in the O(&) square corner 
regions of the type found above for T o ,  and similar terms for O ( d )  square corner 
regions now that there is also an outer side layer that are O(s-tn+&). To conform 
with this pattern, qn) is everywhere 0 ( d n ) ,  and is O(s-tn+t) everywhere 
except in the inner side layer proper where it is O ( d n + f ) .  That this scheme is 
self-consistent can be verified in a straightforward manner, though it should be 
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noted that in calculating aT,,jaz for n B 1 for the side layers, the most significant 
term is that arising from the overall field, but this is not O(s-*n) since qn, = 0 
at both sides. This gradient is therefore O ( d " + * )  in the inner side layer and 
O(E-&"+$) in the outer side layer. 

The scheme we have just deduced shows clearly that our expansion is essentially 
one in powers of the parameter v/3e-*, and it demonstrates the form of the flow 
when g/3e-3 becomes of order unity, but /3 is still small. To study this, let us set 
h = v/3d so that the governing equations with convective acceleration terms 
still neglected are 

(70 )  

( 7 1 )  

sv2v = a@pz ,  
€v4$ + a v p z  = m p x ,  

When no restriction is placed on the size of A, our series analysis suggests that we 
look for a solution for which u is everywhere 0 ( 1 ) ,  and @ is O ( d )  everywhere 
except in the inner side layers where it is O(d) .  The temperature T should have 
an O( 1 )  term of overall scale, O ( d )  terms for all boundary layers, and O ( d )  and 
O ( d )  terms for the two kinds of square corner regions. A solution of this kind can 
be found as will be shown. 

We shall first discuss the solution in the interior, for which it follows from 
(70) that 

(73) 

for some function f. (Here and subsequently, we neglect terms which are O(s*) 
compared with those retained.) There is therefore a small upward flow in the 
interior but no radial flow. Using T, to denote the largest overall component of 
the temperature field, then 

to the lowest order in 8. 
Expressions relating the variables u and @ to Ti valid uniformly across the 

interior and Ekman layers away from the sides are given by (68 )  with the sub- 
script (n) replaced by i. For consistency with (73 )  therefore, the overall tempera- 
ture field must satisfy the constraint 

v q  = - hf ' (x )  (aq /az ) ,  (741 

The flow in the interior region is solved once Ti and f ( x )  are known. To complete 
the specification of the problem for Ti,  we need boundary conditions. Since the 
interior temperature field is larger in magnitude than any of the terms of bound- 
ary layer type, it  must itself satisfy the boundary conditions on T at the sides, 
so that Ti=O at x = O ,  T,=l  at x = l .  

It follows that f ( x )  must satisfy the constraint 

(76 )  

which is obtained by integrating relation (75 )  with respect to x across the annulus. 
49-2 



772 C .  Hunter 

The boundary conditions on q at z = & y require more discussion since, in 
evaluating aT/& here, the contribution from the O(e8) Ekman layer term, which 
we shall write as e.QT,(x, c), is equally as important as a q / a z .  Using this notation, 
the leading terms in (72)  applied to the Ekman layers are 

This equation can be integrated once to give 

aT, = h (;)&z - -(@-€&f(X)), 
ac (79) 

where the condition that T,+ 0 and @+ e4f ( x )  away from the Ekman layers has 
been applied. The temperature boundary conditions a t  the top and bottom 
therefore become 

aT a? 1 aq aT. aTi - 
az ax 42 a< ax ax 
- = -+-- = -‘-hf(x)- - 0 at x = -t y ,  

so that the boundary conditions on T and differ. This reflects the fact that 
there is significant convection in the Ekman layers, and that the isotherms, 
which are vertical at the top and bottom boundaries, are turned through finite 
angles in the Ekman layers. 

The problem of determining the interior flow has now been formulated as that 
of solving equation (74)  for Ti subject to boundary conditions (76) and (80) with 
f unknown, and then using the constraint, (75) to evaluate f. This is a non-linear 
problem and it is unlikely that a general solution is readily obtainable. Most 
probably a numerical treatment will be necessary to obtain solutions for general 
values of h though, as we shall show below, a series development in powers of h 
can be carried sufficiently far to give interesting results concerning modifications 
introduced by convection. 

Before we start on this development a general property of the flow will be 
derived. (74) can be integrated with respect to x between z = i y using the 
boundary conditions (80) and relation (75) to give 

2 1/2f’(x) + hf(x) ’9 = - Af’(x)&T, 

where we introduce the notation 6T = q ( x  = y )  - q ( z  = - y )  for the difference 
in temperature between the top and the bottom of the annulus a t  the horizontal 
position x. Relation (81) can be integrated to give 

( 2  42  + h6T) f ( x )  = constant = 2 42f(O) = 2 4 2 f (  l), (82) 

the latter two equalities being consequences of the fact that the side boundary 
conditions of constant temperature make ST vanish there. Relation (82)  can 
readily be interpreted in terms of the transfer of heat in the horizontal direction 
between the two vertical walls. There are both conductive and convective com- 
ponents of the horizontal transfer, though convective transfer takes place only 
in the Ekman layers since there is no radial flow velocity in the interior. There 
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is of course vertical convective transfer of heat in the interior. The heat trans- 
ferred by conduction, per unit time and unit length in the y-direction, in the 
negative x-direction a t  any value of x is 

where C is the specific heat. The Ekman layer flux is of non-dimensional amount 
@(x) in the negative x-direction in the upper layer and the opposite in the 
lower layer. The horizontal flux in the Ekman layers varies with position since 
there is inflow and outflow in the vertical direction. There is a net convective 
transfer of heat in the negative x-direction due to the difference in temperature 
between fluid in the two Ekman layers and this is of dimensional amount 

(81) therefore expresses the fact that the total heat transfer obtained by sum- 
ming the two contributions is the same at all values of x, and is the same as that 
transferred by conduction across the sides. An expression for the Nusselt 
number, the ratio of the actual heat transfer to that which would obtain with 
conductive transfer only when T = x andf(z) = y /  $2, is 

N = 24f(O)/y. (85)  

We shall next evaluate the early stages of the expansions for Ti andf(x) in 
powers of A, which can be done in an iterative manner. This is equivalent to 
evaluating the most significant contributions to the terms of the series (62) a t  
the start of this section. It is readily seen that 

(86) 
2hy26 sin(2n+ I)nxsinh(2n+ 1)nz 

n-2 n=O (2n+ 1)2cosh(2n+ 1)ny 

tanh(2nf 1)ny 

Ti = x+- c - + O(h2), 

a, sin(%+ 1)nxtanh(2n+ 1)ny -1 + o(h4). 
(2n+ 1)2 -c-  

n=O 

The O(h)  term in Ti is just the correction term (65) and the O(A2) contribution to 
f can be calculated directly from this via relation (82) without going to the next 
order in the expansion for Ti. It is also necessary to use condition (77) to find the 
O(A2) contribution of f(0) and complete the calculation. Successive terms in the 
Ti expansions involve successively more series summations and the O(A2) and 
O(A3) terms, which are also harmonic functions and can readily be derived, are 
not quoted. They are respectively symmetric and antisymmetric functions of z, 
which explains why there is no O(A3) term inf(z). The O(h4) term of Ti is of the 
f i s t  in the development for which the right-hand side of (74) is significant. The 
O(h4) contribution to f(0) can be found using the O(h3) term of Ti and the rela- 
tions (82) and (77)) and gives a further term in the expansion for the Nusselt 
number. It is found that 

N = 1 + ~ ( y )  + A ~ H ( Y )  + 0(~5), (87) 
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where 
4y tanhny(2n + 1) 

G(y)  = 2 zo (2n+ 1)3 ' 

a tanh (2m + 1)ny 
sn(y) =zo (2m+1)[(2m+l)2-4n2]~ 

Graphs of the functions G and - 10H which depend on the geometrical parameter 
y are shown in figure 2. The function C is positive except in the limiting case 
y = 0 of a very shallow annulus, and tends rapidly to its asymptotic form 
0.1367 valid when y is large, being within 10 yo of this value even when the annulus 
is square. Thus, as is to be expected, the transfer of heat is aided by convection. 

r 

Y 
FIGURE 2. The functions G(y)  and - 10 H ( y )  for expansion (87) of the Nusselt number. 
The dashed curves represent the asymptotic expressions valid for large y quoted in the text. 

The growth of the Nussslt number with h is modified by the h4 term which is 
always negative except when y = 0. The asymptotic form of H for large y is 
- 0.00484y2 - 0.01897y3, and is also closely attained for moderate values of y. 

Differentiating (86) shows that the vertical velocity 

a@ e4y2he( -.J2 g cos(2n+ l)nztanh(%+ 1)ny ) + O(h4et). (88) w = - a x = -  n n = o  (2n+ 1) 

The profiles of minus the vertical velocity in the interior as given by the series 
in curly brackets in (88) are displayed in figure 3 for different values of y. The 
series is antisymmetric about x = 4 and so its sum in the range 0.5 < x < 1 only 
is plotted. In  all cases, there is a downflow in the half of the annulus near the hot 
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wall, and an upflow in the other half. These flows are additional to the flows in 
the side boundary layers found in $ 3 .  The function represented by the series 
in (88) has logarithmic singularities near x = 0 and x = 1, and has the explicit 
sum - (l/T 41)) log cot (hnx) 
in the limit y+co (Jeffreys & Jeffreys 1956, p. 439) .  

0.5 

0 4  

0.3 

0.2 

0.1 

( 

FIGURE 3. Profiles of minus the vertical velocity in the interior for different values of y. 

Having discussed the solution of equations (70 )  to (72 )  for the interior, and 
supposing and f to have been determined, the side boundary layers necessary 
to complete the flow can be calculated following previous analysis. The leading 
terms of the solutions for the dynamical variables u and $ in the outer side layer 
near x = 0 are 
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where 

Similar expressions for the layers near x = 1 may easily be found and the solu- 
tions for the Ekman extensions of the side layers are readily evaluated, their 6 
variation being of the characteristic kind as in expressions (68), for instance. It 
is also easy to find partial expressions for the components of the temperature 
field of boundary-layer character in the side layers and their Ekman extensions, 
but for the full matching and determination of these, it is necessary to solve full 
partial differential equations in the square-corner regions described above. We 
shall not determine these small corrections to the temperature field. 

Having set up this problem in which conductive and convective terms are of 
comparable magnitude and shown the nature of the solution, we can re-examine 
the approximation we made earlier of neglecting the convective acceleration 
terms in the equations of motion. By comparing the magnitudes of terms ne- 
glected with those retained, it is seen that this approximation is least good in the 
inner side layers and their Ekman extensions where the error is 0(/3€-*). Th 
theory we have outlined therefore requires 

€ g 1, p€-+ g 1, cT/3€-& 6 O(1). (91) 

There is unfortunately a lack of experimental data for annular flows with the 
upper surface rigid against which to test any of this theory as most of the experi- 
ments are done with the upper surface free. As the subsequent discussion shows, 
the theoretical extensions to include convective effects in the free surface problem 
are not readily accomplished in the same way as we have treated the rigid surface 
problem. If, for want of anything more appropriate, one refers to the experi- 
mental work of Fowlis & Hide for the free surface problem, it is seen that the 
parameter range defined by expressions (91) covers a good section of the lower 
symmetrical rQgime and includes part of the line of transition from axisym- 
metrical flow to the steady wave rQgime. 

Finally, we consider briefly what happens when we tackle the problem with the 
upper surface free in the same manner. Unfortunately, it  appears that it is not 
possible to achieve results comparable with those we were able to obtain for the 
rigid surface case. 

In  the free surface problem the effect of the more complicated side boundary 
layers becomes dominant when we develop the series expansion in powers of (cr/3) 
as before. This becomes apparent right away in the solution for T(fl. The source 
strengths of the Ekman layers, the inner and outer side layers and the Ekman 
extensions of the outer side layers are all of equal significance in producing an 
O( 1) overall field for T(l). (Note that the particular integral q0) of T(fl now satisfies 
the correct boundary condition on the upper surface. It also satisfies the correct 
boundary condition on the lower surface except near the sides. The error within 
O ( d )  of the sides is O(E-&), however, and this induces an O( 1) component of T(l) 
in the overall field which is of the same magnitude as q0).) In  all the side layers 
and the Ekman extensions, there are also O( 1) components of T, with boundary- 
layer character while, in the square O($) and O(&) regions near the bottom, there 
are components of T(, which are locally O(s-4) and O(E-4) respectively. (Note that 
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these terms arise only in the lower corners. The meridional flow in the upper 
corners is weaker because of the free surface boundary condition, as is shown by 
the solutions (43) and (47).) The first correction to the temperature field is there- 
fore much larger near these lower corners than it is elsewhere. This situation is 
accentuated when we go on to discuss T(2), for the dominant source region is then 
the lower square O($) corners which produce a dominant O(B-4) component of 
T(2) and have a local term which is O(s-2). The expansion developed thus far gives 
an interior solution for T which is 

In  the O(.d) corner, the local temperature field is 

while in the O ( d )  corner, the local temperature fieldis 

It is apparent therefore that we do not have a solution of such simple structure 
as we had previously when all quantities had series expansions in powers of 
ape-8. The ratio of the third to the second terms of the three series just quoted is 
vpe-it- and, if we set this to be of order unity, then our series apparently all con- 
verge. The justification for this last remark is that it is possible to construct a 
self-consistent scheme for the magnitudes of the various variables in the different 
regions. This has 

u = 0(1) throughout, 

I,+ = O(e) in the interior and its Ekman layers, 

$ = O ( d )  in the inner side layers, 

I,+ = O(&) elsewhere near the sides, 

T = x + O ( d )  + O ( d )  in the lower d square corners, 

+ O(&) in the lower d square corners. 

Then the dynamical problem of determining u and I,+ uncouples from that of 
determining the corrections to T = x, and the solution is identical with that of 
$4. The only novel feature of this problem marking a step forward from the 
problem of $ 4 is that, when we come to write down equation (72) for the determin- 
ing of the correction to the conductive temperature field in the lower square 
corner regions, terms on both sides are of equal significance. Since, in this scheme, 
the corrections to the conductive temperature field are everywhere small, there 
does not appear to be much to be gained from continuing this line of investigation. 
Presumably the solution to the free surface problem when conductive and con- 
vective effects are of equal significance is so different from that when conductive 
effects are dominant that it can not be approached in this way, and in this respect 
it is different from the problem in which all the boundaries are rigid. 
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